MakeItFrom.com
Menu (ESC)

C74400 Nickel Silver vs. 6065 Aluminum

C74400 nickel silver belongs to the copper alloys classification, while 6065 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C74400 nickel silver and the bottom bar is 6065 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 43
4.5 to 11
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 39
26
Shear Strength, MPa 240
190 to 230
Tensile Strength: Ultimate (UTS), MPa 350
310 to 400
Tensile Strength: Yield (Proof), MPa 120
270 to 380

Thermal Properties

Latent Heat of Fusion, J/g 180
400
Maximum Temperature: Mechanical, °C 140
180
Melting Completion (Liquidus), °C 930
640
Melting Onset (Solidus), °C 910
590
Specific Heat Capacity, J/kg-K 390
890
Thermal Conductivity, W/m-K 120
170
Thermal Expansion, µm/m-K 20
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
43
Electrical Conductivity: Equal Weight (Specific), % IACS 29
140

Otherwise Unclassified Properties

Base Metal Price, % relative 25
11
Density, g/cm3 8.2
2.8
Embodied Carbon, kg CO2/kg material 2.9
8.4
Embodied Energy, MJ/kg 48
150
Embodied Water, L/kg 320
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 63
540 to 1040
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
49
Strength to Weight: Axial, points 12
31 to 40
Strength to Weight: Bending, points 14
36 to 43
Thermal Diffusivity, mm2/s 37
67
Thermal Shock Resistance, points 12
14 to 18

Alloy Composition

Aluminum (Al), % 0
94.4 to 98.2
Bismuth (Bi), % 0
0.5 to 1.5
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 62 to 66
0.15 to 0.4
Iron (Fe), % 0 to 0.050
0 to 0.7
Lead (Pb), % 0 to 0.050
0 to 0.050
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 2.0 to 4.0
0
Silicon (Si), % 0
0.4 to 0.8
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 29.6 to 36
0 to 0.25
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15