MakeItFrom.com
Menu (ESC)

C74400 Nickel Silver vs. C82800 Copper

Both C74400 nickel silver and C82800 copper are copper alloys. They have 64% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C74400 nickel silver and the bottom bar is C82800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 43
1.0 to 20
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 39
46
Tensile Strength: Ultimate (UTS), MPa 350
670 to 1140
Tensile Strength: Yield (Proof), MPa 120
380 to 1000

Thermal Properties

Latent Heat of Fusion, J/g 180
240
Maximum Temperature: Mechanical, °C 140
310
Melting Completion (Liquidus), °C 930
930
Melting Onset (Solidus), °C 910
890
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
18
Electrical Conductivity: Equal Weight (Specific), % IACS 29
19

Otherwise Unclassified Properties

Density, g/cm3 8.2
8.7
Embodied Carbon, kg CO2/kg material 2.9
12
Embodied Energy, MJ/kg 48
190
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 63
590 to 4080
Stiffness to Weight: Axial, points 7.4
7.8
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 12
21 to 36
Strength to Weight: Bending, points 14
20 to 28
Thermal Diffusivity, mm2/s 37
36
Thermal Shock Resistance, points 12
23 to 39

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.5 to 2.9
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 62 to 66
94.6 to 97.2
Iron (Fe), % 0 to 0.050
0 to 0.25
Lead (Pb), % 0 to 0.050
0 to 0.020
Nickel (Ni), % 2.0 to 4.0
0 to 0.2
Silicon (Si), % 0
0.2 to 0.35
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 29.6 to 36
0 to 0.1
Residuals, % 0
0 to 0.5