MakeItFrom.com
Menu (ESC)

C75400 Nickel Silver vs. ASTM A182 Grade F24

C75400 nickel silver belongs to the copper alloys classification, while ASTM A182 grade F24 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C75400 nickel silver and the bottom bar is ASTM A182 grade F24.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0 to 43
23
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 46
74
Shear Strength, MPa 250 to 370
420
Tensile Strength: Ultimate (UTS), MPa 370 to 630
670
Tensile Strength: Yield (Proof), MPa 130 to 590
460

Thermal Properties

Latent Heat of Fusion, J/g 200
260
Maximum Temperature: Mechanical, °C 190
460
Melting Completion (Liquidus), °C 1080
1470
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 36
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 7.4
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 32
4.0
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 3.8
2.3
Embodied Energy, MJ/kg 59
33
Embodied Water, L/kg 300
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 120
140
Resilience: Unit (Modulus of Resilience), kJ/m3 75 to 1450
570
Stiffness to Weight: Axial, points 7.9
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12 to 21
24
Strength to Weight: Bending, points 13 to 19
22
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 12 to 21
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0015 to 0.0070
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
2.2 to 2.6
Copper (Cu), % 63.5 to 66.5
0
Iron (Fe), % 0 to 0.25
94.5 to 96.1
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.3 to 0.7
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 14 to 16
0
Nitrogen (N), % 0
0 to 0.12
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0.15 to 0.45
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.060 to 0.1
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 16.2 to 22.5
0
Residuals, % 0 to 0.5
0