MakeItFrom.com
Menu (ESC)

C75400 Nickel Silver vs. EN 1.6368 Steel

C75400 nickel silver belongs to the copper alloys classification, while EN 1.6368 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C75400 nickel silver and the bottom bar is EN 1.6368 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0 to 43
18
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 46
73
Shear Strength, MPa 250 to 370
410 to 430
Tensile Strength: Ultimate (UTS), MPa 370 to 630
660 to 690
Tensile Strength: Yield (Proof), MPa 130 to 590
460 to 490

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 190
410
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 36
40
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 7.4
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
3.4
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 3.8
1.7
Embodied Energy, MJ/kg 59
22
Embodied Water, L/kg 300
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 75 to 1450
580 to 650
Stiffness to Weight: Axial, points 7.9
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12 to 21
23 to 24
Strength to Weight: Bending, points 13 to 19
21 to 22
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 12 to 21
20

Alloy Composition

Aluminum (Al), % 0
0.015 to 0.040
Carbon (C), % 0
0 to 0.17
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 63.5 to 66.5
0.5 to 0.8
Iron (Fe), % 0 to 0.25
95.1 to 97.2
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 14 to 16
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.25 to 0.5
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 16.2 to 22.5
0
Residuals, % 0 to 0.5
0