MakeItFrom.com
Menu (ESC)

C77400 Nickel Silver vs. 6162 Aluminum

C77400 nickel silver belongs to the copper alloys classification, while 6162 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C77400 nickel silver and the bottom bar is 6162 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 25
6.7 to 9.1
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 42
26
Shear Strength, MPa 360
170 to 180
Tensile Strength: Ultimate (UTS), MPa 570
290 to 300
Tensile Strength: Yield (Proof), MPa 250
260 to 270

Thermal Properties

Latent Heat of Fusion, J/g 170
400
Maximum Temperature: Mechanical, °C 130
160
Melting Completion (Liquidus), °C 810
640
Melting Onset (Solidus), °C 770
620
Specific Heat Capacity, J/kg-K 390
900
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
50
Electrical Conductivity: Equal Weight (Specific), % IACS 31
170

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 3.5
8.3
Embodied Energy, MJ/kg 57
150
Embodied Water, L/kg 320
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
19 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 290
510 to 550
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 20
50
Strength to Weight: Axial, points 20
29 to 30
Strength to Weight: Bending, points 19
36
Thermal Shock Resistance, points 18
13

Alloy Composition

Aluminum (Al), % 0
96.7 to 98.9
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 43 to 47
0 to 0.2
Iron (Fe), % 0
0 to 0.5
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0
0.7 to 1.1
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 9.0 to 11
0
Silicon (Si), % 0
0.4 to 0.8
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 41.3 to 48
0 to 0.25
Residuals, % 0
0 to 0.15