MakeItFrom.com
Menu (ESC)

C77400 Nickel Silver vs. EN AC-45500 Aluminum

C77400 nickel silver belongs to the copper alloys classification, while EN AC-45500 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C77400 nickel silver and the bottom bar is EN AC-45500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 25
2.8
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 42
26
Tensile Strength: Ultimate (UTS), MPa 570
320
Tensile Strength: Yield (Proof), MPa 250
250

Thermal Properties

Latent Heat of Fusion, J/g 170
500
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 810
610
Melting Onset (Solidus), °C 770
600
Specific Heat Capacity, J/kg-K 390
900
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
33
Electrical Conductivity: Equal Weight (Specific), % IACS 31
110

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 3.5
8.0
Embodied Energy, MJ/kg 57
150
Embodied Water, L/kg 320
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
8.2
Resilience: Unit (Modulus of Resilience), kJ/m3 290
430
Stiffness to Weight: Axial, points 7.7
15
Stiffness to Weight: Bending, points 20
53
Strength to Weight: Axial, points 20
34
Strength to Weight: Bending, points 19
40
Thermal Shock Resistance, points 18
15

Alloy Composition

Aluminum (Al), % 0
90.6 to 93.1
Copper (Cu), % 43 to 47
0.2 to 0.7
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0 to 0.2
0
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 9.0 to 11
0
Silicon (Si), % 0
6.5 to 7.5
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 41.3 to 48
0 to 0.070
Residuals, % 0
0 to 0.1