MakeItFrom.com
Menu (ESC)

C77600 Nickel Silver vs. 5083 Aluminum

C77600 nickel silver belongs to the copper alloys classification, while 5083 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C77600 nickel silver and the bottom bar is 5083 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 30
1.1 to 17
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 43
26
Shear Strength, MPa 410
170 to 220
Tensile Strength: Ultimate (UTS), MPa 630
290 to 390
Tensile Strength: Yield (Proof), MPa 320
110 to 340

Thermal Properties

Latent Heat of Fusion, J/g 180
400
Maximum Temperature: Mechanical, °C 140
190
Melting Completion (Liquidus), °C 830
640
Melting Onset (Solidus), °C 790
580
Specific Heat Capacity, J/kg-K 390
900
Thermal Expansion, µm/m-K 20
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
29
Electrical Conductivity: Equal Weight (Specific), % IACS 31
96

Otherwise Unclassified Properties

Base Metal Price, % relative 27
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 3.7
8.9
Embodied Energy, MJ/kg 60
150
Embodied Water, L/kg 310
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
4.2 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 470
95 to 860
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
50
Strength to Weight: Axial, points 22
29 to 40
Strength to Weight: Bending, points 21
36 to 44
Thermal Shock Resistance, points 20
12 to 17

Alloy Composition

Aluminum (Al), % 0
92.4 to 95.6
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 42 to 45
0 to 0.1
Iron (Fe), % 0 to 0.2
0 to 0.4
Lead (Pb), % 0 to 0.25
0
Magnesium (Mg), % 0
4.0 to 4.9
Manganese (Mn), % 0 to 0.25
0.4 to 1.0
Nickel (Ni), % 12 to 14
0
Silicon (Si), % 0
0 to 0.4
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 39.7 to 46
0 to 0.25
Residuals, % 0
0 to 0.15