MakeItFrom.com
Menu (ESC)

C78200 Nickel Silver vs. Nickel 890

C78200 nickel silver belongs to the copper alloys classification, while nickel 890 belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C78200 nickel silver and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 40
39
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 43
78
Shear Strength, MPa 280 to 400
400
Tensile Strength: Ultimate (UTS), MPa 370 to 630
590
Tensile Strength: Yield (Proof), MPa 170 to 570
230

Thermal Properties

Latent Heat of Fusion, J/g 190
330
Maximum Temperature: Mechanical, °C 160
1000
Melting Completion (Liquidus), °C 1000
1390
Melting Onset (Solidus), °C 970
1340
Specific Heat Capacity, J/kg-K 390
480
Thermal Expansion, µm/m-K 19
14

Otherwise Unclassified Properties

Base Metal Price, % relative 28
47
Density, g/cm3 8.4
8.1
Embodied Carbon, kg CO2/kg material 3.3
8.2
Embodied Energy, MJ/kg 52
120
Embodied Water, L/kg 310
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 1440
140
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12 to 21
20
Strength to Weight: Bending, points 14 to 19
19
Thermal Shock Resistance, points 12 to 21
15

Alloy Composition

Aluminum (Al), % 0
0.050 to 0.6
Carbon (C), % 0
0.060 to 0.14
Chromium (Cr), % 0
23.5 to 28.5
Copper (Cu), % 63 to 67
0 to 0.75
Iron (Fe), % 0 to 0.35
17.3 to 33.9
Lead (Pb), % 1.5 to 2.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 7.0 to 9.0
40 to 45
Niobium (Nb), % 0
0.2 to 1.0
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 20.2 to 28.5
0
Residuals, % 0 to 0.5
0