MakeItFrom.com
Menu (ESC)

C79600 Nickel Silver vs. C95300 Bronze

Both C79600 nickel silver and C95300 bronze are copper alloys. They have 45% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C79600 nickel silver and the bottom bar is C95300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 15
14 to 25
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 480
520 to 610
Tensile Strength: Yield (Proof), MPa 300
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 180
230
Maximum Temperature: Mechanical, °C 130
220
Melting Completion (Liquidus), °C 930
1050
Melting Onset (Solidus), °C 880
1040
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 36
63
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
13
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
14

Otherwise Unclassified Properties

Base Metal Price, % relative 25
28
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 3.5
3.1
Embodied Energy, MJ/kg 57
52
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 400
170 to 420
Stiffness to Weight: Axial, points 7.8
7.5
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 17
17 to 21
Strength to Weight: Bending, points 17
17 to 19
Thermal Diffusivity, mm2/s 12
17
Thermal Shock Resistance, points 15
19 to 22

Alloy Composition

Aluminum (Al), % 0
9.0 to 11
Copper (Cu), % 43.5 to 46.5
86.5 to 90.2
Iron (Fe), % 0
0.8 to 1.5
Lead (Pb), % 0.8 to 1.2
0
Manganese (Mn), % 1.5 to 2.5
0
Nickel (Ni), % 9.0 to 11
0
Zinc (Zn), % 38.3 to 45.2
0
Residuals, % 0
0 to 1.0