MakeItFrom.com
Menu (ESC)

C81400 Copper vs. 7003 Aluminum

C81400 copper belongs to the copper alloys classification, while 7003 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C81400 copper and the bottom bar is 7003 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 11
11
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 41
26
Tensile Strength: Ultimate (UTS), MPa 370
350 to 390
Tensile Strength: Yield (Proof), MPa 250
300 to 310

Thermal Properties

Latent Heat of Fusion, J/g 210
380
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1090
630
Melting Onset (Solidus), °C 1070
510
Specific Heat Capacity, J/kg-K 390
870
Thermal Conductivity, W/m-K 260
150
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
36
Electrical Conductivity: Equal Weight (Specific), % IACS 61
110

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.9
2.9
Embodied Carbon, kg CO2/kg material 2.8
8.1
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 310
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
37 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 260
630 to 710
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
47
Strength to Weight: Axial, points 11
33 to 37
Strength to Weight: Bending, points 13
37 to 40
Thermal Diffusivity, mm2/s 75
59
Thermal Shock Resistance, points 13
15 to 17

Alloy Composition

Aluminum (Al), % 0
90.6 to 94.5
Beryllium (Be), % 0.020 to 0.1
0
Chromium (Cr), % 0.6 to 1.0
0 to 0.2
Copper (Cu), % 98.4 to 99.38
0 to 0.2
Iron (Fe), % 0
0 to 0.35
Magnesium (Mg), % 0
0.5 to 1.0
Manganese (Mn), % 0
0 to 0.3
Silicon (Si), % 0
0 to 0.3
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
5.0 to 6.5
Zirconium (Zr), % 0
0.050 to 0.25
Residuals, % 0
0 to 0.15