MakeItFrom.com
Menu (ESC)

C81400 Copper vs. 7475 Aluminum

C81400 copper belongs to the copper alloys classification, while 7475 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C81400 copper and the bottom bar is 7475 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 11
10 to 12
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 41
26
Tensile Strength: Ultimate (UTS), MPa 370
530 to 590
Tensile Strength: Yield (Proof), MPa 250
440 to 520

Thermal Properties

Latent Heat of Fusion, J/g 210
380
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1090
640
Melting Onset (Solidus), °C 1070
480
Specific Heat Capacity, J/kg-K 390
870
Thermal Conductivity, W/m-K 260
140 to 160
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
33 to 42
Electrical Conductivity: Equal Weight (Specific), % IACS 61
98 to 120

Otherwise Unclassified Properties

Base Metal Price, % relative 33
10
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 2.8
8.2
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 310
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
53 to 68
Resilience: Unit (Modulus of Resilience), kJ/m3 260
1390 to 1920
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
46
Strength to Weight: Axial, points 11
49 to 55
Strength to Weight: Bending, points 13
48 to 52
Thermal Diffusivity, mm2/s 75
53 to 63
Thermal Shock Resistance, points 13
23 to 26

Alloy Composition

Aluminum (Al), % 0
88.6 to 91.6
Beryllium (Be), % 0.020 to 0.1
0
Chromium (Cr), % 0.6 to 1.0
0.18 to 0.25
Copper (Cu), % 98.4 to 99.38
1.2 to 1.9
Iron (Fe), % 0
0 to 0.12
Magnesium (Mg), % 0
1.9 to 2.6
Manganese (Mn), % 0
0 to 0.060
Silicon (Si), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.060
Zinc (Zn), % 0
5.1 to 6.2
Residuals, % 0
0 to 0.15