MakeItFrom.com
Menu (ESC)

C81400 Copper vs. AISI 301LN Stainless Steel

C81400 copper belongs to the copper alloys classification, while AISI 301LN stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 11
23 to 51
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 370
630 to 1060
Tensile Strength: Yield (Proof), MPa 250
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
890
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1070
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 61
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 33
13
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 45
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 260
180 to 1520
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
22 to 38
Strength to Weight: Bending, points 13
21 to 30
Thermal Diffusivity, mm2/s 75
4.0
Thermal Shock Resistance, points 13
14 to 24

Alloy Composition

Beryllium (Be), % 0.020 to 0.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.6 to 1.0
16 to 18
Copper (Cu), % 98.4 to 99.38
0
Iron (Fe), % 0
70.7 to 77.9
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.070 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0