MakeItFrom.com
Menu (ESC)

C81400 Copper vs. ASTM A182 Grade F5a

C81400 copper belongs to the copper alloys classification, while ASTM A182 grade F5a belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is ASTM A182 grade F5a.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 11
25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
74
Tensile Strength: Ultimate (UTS), MPa 370
710
Tensile Strength: Yield (Proof), MPa 250
520

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
510
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1070
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 61
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 33
4.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.8
Embodied Energy, MJ/kg 45
24
Embodied Water, L/kg 310
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
160
Resilience: Unit (Modulus of Resilience), kJ/m3 260
700
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
25
Strength to Weight: Bending, points 13
23
Thermal Diffusivity, mm2/s 75
11
Thermal Shock Resistance, points 13
20

Alloy Composition

Beryllium (Be), % 0.020 to 0.1
0
Carbon (C), % 0
0 to 0.25
Chromium (Cr), % 0.6 to 1.0
4.0 to 6.0
Copper (Cu), % 98.4 to 99.38
0
Iron (Fe), % 0
91.4 to 95.6
Manganese (Mn), % 0
0 to 0.6
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0