MakeItFrom.com
Menu (ESC)

C81400 Copper vs. AWS E3155

C81400 copper belongs to the copper alloys classification, while AWS E3155 belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is AWS E3155.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 11
23
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
81
Tensile Strength: Ultimate (UTS), MPa 370
770

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1070
1410
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 260
13
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 33
70
Density, g/cm3 8.9
8.4
Embodied Carbon, kg CO2/kg material 2.8
7.7
Embodied Energy, MJ/kg 45
110
Embodied Water, L/kg 310
300

Common Calculations

Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11
26
Strength to Weight: Bending, points 13
22
Thermal Diffusivity, mm2/s 75
3.3
Thermal Shock Resistance, points 13
20

Alloy Composition

Beryllium (Be), % 0.020 to 0.1
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.6 to 1.0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 98.4 to 99.38
0 to 0.75
Iron (Fe), % 0
23.3 to 36.3
Manganese (Mn), % 0
1.0 to 2.5
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
2.0 to 3.0
Residuals, % 0 to 0.5
0