MakeItFrom.com
Menu (ESC)

C81400 Copper vs. EN 1.4303 Stainless Steel

C81400 copper belongs to the copper alloys classification, while EN 1.4303 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is EN 1.4303 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 11
13 to 49
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 41
77
Tensile Strength: Ultimate (UTS), MPa 370
590 to 900
Tensile Strength: Yield (Proof), MPa 250
230 to 560

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
940
Melting Completion (Liquidus), °C 1090
1420
Melting Onset (Solidus), °C 1070
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 61
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 33
17
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.2
Embodied Energy, MJ/kg 45
46
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
110 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 260
140 to 800
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
21 to 32
Strength to Weight: Bending, points 13
20 to 26
Thermal Diffusivity, mm2/s 75
4.0
Thermal Shock Resistance, points 13
13 to 20

Alloy Composition

Beryllium (Be), % 0.020 to 0.1
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0.6 to 1.0
17 to 19
Copper (Cu), % 98.4 to 99.38
0
Iron (Fe), % 0
64.8 to 72
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
11 to 13
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 0.5
0