MakeItFrom.com
Menu (ESC)

C81400 Copper vs. EN 1.5113 Steel

C81400 copper belongs to the copper alloys classification, while EN 1.5113 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is EN 1.5113 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 11
11 to 18
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
72
Tensile Strength: Ultimate (UTS), MPa 370
580 to 900
Tensile Strength: Yield (Proof), MPa 250
320 to 770

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1070
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
52
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 61
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 33
2.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 45
19
Embodied Water, L/kg 310
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
91 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 260
270 to 1570
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11
21 to 32
Strength to Weight: Bending, points 13
20 to 27
Thermal Diffusivity, mm2/s 75
14
Thermal Shock Resistance, points 13
17 to 26

Alloy Composition

Beryllium (Be), % 0.020 to 0.1
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
0
Iron (Fe), % 0
97 to 97.5
Manganese (Mn), % 0
1.6 to 1.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.9 to 1.1
Sulfur (S), % 0
0 to 0.025
Residuals, % 0 to 0.5
0