MakeItFrom.com
Menu (ESC)

C81400 Copper vs. EN 1.5662 Steel

C81400 copper belongs to the copper alloys classification, while EN 1.5662 steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is EN 1.5662 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 11
20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 370
740 to 750
Tensile Strength: Yield (Proof), MPa 250
550 to 660

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
430
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1070
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
8.7
Electrical Conductivity: Equal Weight (Specific), % IACS 61
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 33
7.5
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.8
2.3
Embodied Energy, MJ/kg 45
31
Embodied Water, L/kg 310
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 260
810 to 1150
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11
26
Strength to Weight: Bending, points 13
23
Thermal Shock Resistance, points 13
22

Alloy Composition

Beryllium (Be), % 0.020 to 0.1
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
0
Iron (Fe), % 0
88.6 to 91.2
Manganese (Mn), % 0
0.3 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
8.5 to 10
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.0050
Vanadium (V), % 0
0 to 0.050
Residuals, % 0 to 0.5
0