MakeItFrom.com
Menu (ESC)

C81400 Copper vs. EN AC-46200 Aluminum

C81400 copper belongs to the copper alloys classification, while EN AC-46200 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C81400 copper and the bottom bar is EN AC-46200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
73
Elongation at Break, % 11
1.1
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 41
27
Tensile Strength: Ultimate (UTS), MPa 370
210
Tensile Strength: Yield (Proof), MPa 250
130

Thermal Properties

Latent Heat of Fusion, J/g 210
510
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
620
Melting Onset (Solidus), °C 1070
540
Specific Heat Capacity, J/kg-K 390
880
Thermal Conductivity, W/m-K 260
110
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
28
Electrical Conductivity: Equal Weight (Specific), % IACS 61
88

Otherwise Unclassified Properties

Base Metal Price, % relative 33
10
Density, g/cm3 8.9
2.8
Embodied Carbon, kg CO2/kg material 2.8
7.7
Embodied Energy, MJ/kg 45
140
Embodied Water, L/kg 310
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
2.0
Resilience: Unit (Modulus of Resilience), kJ/m3 260
110
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 11
21
Strength to Weight: Bending, points 13
28
Thermal Diffusivity, mm2/s 75
44
Thermal Shock Resistance, points 13
9.5

Alloy Composition

Aluminum (Al), % 0
82.6 to 90.3
Beryllium (Be), % 0.020 to 0.1
0
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
2.0 to 3.5
Iron (Fe), % 0
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0
0.050 to 0.55
Manganese (Mn), % 0
0.15 to 0.65
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 0
7.5 to 9.5
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.2
Residuals, % 0
0 to 0.25