MakeItFrom.com
Menu (ESC)

C81400 Copper vs. CC760S Brass

Both C81400 copper and CC760S brass are copper alloys. They have 86% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is CC760S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 11
22
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 41
42
Tensile Strength: Ultimate (UTS), MPa 370
180
Tensile Strength: Yield (Proof), MPa 250
80

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
1000
Melting Onset (Solidus), °C 1070
940
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 260
150
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
38
Electrical Conductivity: Equal Weight (Specific), % IACS 61
40

Otherwise Unclassified Properties

Base Metal Price, % relative 33
28
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 45
43
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
33
Resilience: Unit (Modulus of Resilience), kJ/m3 260
29
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 11
5.8
Strength to Weight: Bending, points 13
8.2
Thermal Diffusivity, mm2/s 75
45
Thermal Shock Resistance, points 13
6.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Arsenic (As), % 0
0.050 to 0.15
Beryllium (Be), % 0.020 to 0.1
0
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
83 to 88
Iron (Fe), % 0
0 to 0.15
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.020
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
10.7 to 17
Residuals, % 0 to 0.5
0