MakeItFrom.com
Menu (ESC)

C81400 Copper vs. Grade M35-1 Nickel

C81400 copper belongs to the copper alloys classification, while grade M35-1 nickel belongs to the nickel alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is grade M35-1 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
160
Elongation at Break, % 11
28
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 41
62
Tensile Strength: Ultimate (UTS), MPa 370
500
Tensile Strength: Yield (Proof), MPa 250
190

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
900
Melting Completion (Liquidus), °C 1090
1280
Melting Onset (Solidus), °C 1070
1240
Specific Heat Capacity, J/kg-K 390
430
Thermal Conductivity, W/m-K 260
22
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 61
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 33
55
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.8
8.2
Embodied Energy, MJ/kg 45
120
Embodied Water, L/kg 310
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
110
Resilience: Unit (Modulus of Resilience), kJ/m3 260
120
Stiffness to Weight: Axial, points 7.3
10
Stiffness to Weight: Bending, points 18
21
Strength to Weight: Axial, points 11
16
Strength to Weight: Bending, points 13
16
Thermal Diffusivity, mm2/s 75
5.7
Thermal Shock Resistance, points 13
17

Alloy Composition

Beryllium (Be), % 0.020 to 0.1
0
Carbon (C), % 0
0 to 0.35
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
26 to 33
Iron (Fe), % 0
0 to 3.5
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
59.8 to 74
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.3
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0