MakeItFrom.com
Menu (ESC)

C81400 Copper vs. SAE-AISI 4340 Steel

C81400 copper belongs to the copper alloys classification, while SAE-AISI 4340 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is SAE-AISI 4340 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 11
12 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 370
690 to 1280
Tensile Strength: Yield (Proof), MPa 250
470 to 1150

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
430
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1070
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 260
44
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 61
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 33
3.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.7
Embodied Energy, MJ/kg 45
22
Embodied Water, L/kg 310
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
79 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 260
590 to 3490
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11
24 to 45
Strength to Weight: Bending, points 13
22 to 33
Thermal Diffusivity, mm2/s 75
12
Thermal Shock Resistance, points 13
20 to 38

Alloy Composition

Beryllium (Be), % 0.020 to 0.1
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0.6 to 1.0
0.7 to 0.9
Copper (Cu), % 98.4 to 99.38
0
Iron (Fe), % 0
95.1 to 96.3
Manganese (Mn), % 0
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Residuals, % 0 to 0.5
0