MakeItFrom.com
Menu (ESC)

C81400 Copper vs. Titanium 6-7

C81400 copper belongs to the copper alloys classification, while titanium 6-7 belongs to the titanium alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is titanium 6-7.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 11
11
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 41
45
Tensile Strength: Ultimate (UTS), MPa 370
1020
Tensile Strength: Yield (Proof), MPa 250
900

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
300
Melting Completion (Liquidus), °C 1090
1700
Melting Onset (Solidus), °C 1070
1650
Specific Heat Capacity, J/kg-K 390
520
Thermal Expansion, µm/m-K 17
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
75
Density, g/cm3 8.9
5.1
Embodied Carbon, kg CO2/kg material 2.8
34
Embodied Energy, MJ/kg 45
540
Embodied Water, L/kg 310
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
110
Resilience: Unit (Modulus of Resilience), kJ/m3 260
3460
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
32
Strength to Weight: Axial, points 11
56
Strength to Weight: Bending, points 13
44
Thermal Shock Resistance, points 13
66

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Beryllium (Be), % 0.020 to 0.1
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
0
Hydrogen (H), % 0
0 to 0.0090
Iron (Fe), % 0
0 to 0.25
Molybdenum (Mo), % 0
6.5 to 7.5
Niobium (Nb), % 0
6.5 to 7.5
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0
84.9 to 88
Residuals, % 0 to 0.5
0