MakeItFrom.com
Menu (ESC)

C81400 Copper vs. C21000 Brass

Both C81400 copper and C21000 brass are copper alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is C21000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 11
2.9 to 50
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 69
36 to 73
Shear Modulus, GPa 41
43
Tensile Strength: Ultimate (UTS), MPa 370
240 to 450
Tensile Strength: Yield (Proof), MPa 250
69 to 440

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
190
Melting Completion (Liquidus), °C 1090
1070
Melting Onset (Solidus), °C 1070
1050
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 260
230
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
56
Electrical Conductivity: Equal Weight (Specific), % IACS 61
57

Otherwise Unclassified Properties

Base Metal Price, % relative 33
30
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 45
42
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
13 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 260
21 to 830
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 11
7.4 to 14
Strength to Weight: Bending, points 13
9.6 to 15
Thermal Diffusivity, mm2/s 75
69
Thermal Shock Resistance, points 13
8.1 to 15

Alloy Composition

Beryllium (Be), % 0.020 to 0.1
0
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
94 to 96
Iron (Fe), % 0
0 to 0.050
Lead (Pb), % 0
0 to 0.030
Zinc (Zn), % 0
3.7 to 6.0
Residuals, % 0
0 to 0.2