MakeItFrom.com
Menu (ESC)

C81400 Copper vs. C37100 Brass

Both C81400 copper and C37100 brass are copper alloys. They have 60% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is C37100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 11
8.0 to 40
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 370
370 to 520
Tensile Strength: Yield (Proof), MPa 250
150 to 390

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1090
900
Melting Onset (Solidus), °C 1070
890
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 260
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
27
Electrical Conductivity: Equal Weight (Specific), % IACS 61
30

Otherwise Unclassified Properties

Base Metal Price, % relative 33
23
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 45
45
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
38 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 260
110 to 750
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 11
13 to 18
Strength to Weight: Bending, points 13
14 to 18
Thermal Diffusivity, mm2/s 75
39
Thermal Shock Resistance, points 13
12 to 17

Alloy Composition

Beryllium (Be), % 0.020 to 0.1
0
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
58 to 62
Iron (Fe), % 0
0 to 0.15
Lead (Pb), % 0
0.6 to 1.2
Zinc (Zn), % 0
36.3 to 41.4
Residuals, % 0
0 to 0.4