MakeItFrom.com
Menu (ESC)

C81400 Copper vs. C53800 Bronze

Both C81400 copper and C53800 bronze are copper alloys. They have 86% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is C53800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 11
2.3
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 370
830
Tensile Strength: Yield (Proof), MPa 250
660

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1090
980
Melting Onset (Solidus), °C 1070
800
Specific Heat Capacity, J/kg-K 390
360
Thermal Conductivity, W/m-K 260
61
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 61
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
37
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 2.8
3.9
Embodied Energy, MJ/kg 45
64
Embodied Water, L/kg 310
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
18
Resilience: Unit (Modulus of Resilience), kJ/m3 260
2020
Stiffness to Weight: Axial, points 7.3
6.8
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 11
26
Strength to Weight: Bending, points 13
22
Thermal Diffusivity, mm2/s 75
19
Thermal Shock Resistance, points 13
31

Alloy Composition

Beryllium (Be), % 0.020 to 0.1
0
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
85.1 to 86.5
Iron (Fe), % 0
0 to 0.030
Lead (Pb), % 0
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.060
Nickel (Ni), % 0
0 to 0.030
Tin (Sn), % 0
13.1 to 13.9
Zinc (Zn), % 0
0 to 0.12
Residuals, % 0
0 to 0.2