MakeItFrom.com
Menu (ESC)

C81400 Copper vs. C64210 Bronze

Both C81400 copper and C64210 bronze are copper alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is C64210 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 11
35
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 69
77
Shear Modulus, GPa 41
42
Tensile Strength: Ultimate (UTS), MPa 370
570
Tensile Strength: Yield (Proof), MPa 250
290

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 1090
1040
Melting Onset (Solidus), °C 1070
990
Specific Heat Capacity, J/kg-K 390
430
Thermal Conductivity, W/m-K 260
48
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
13
Electrical Conductivity: Equal Weight (Specific), % IACS 61
14

Otherwise Unclassified Properties

Base Metal Price, % relative 33
29
Density, g/cm3 8.9
8.4
Embodied Carbon, kg CO2/kg material 2.8
3.0
Embodied Energy, MJ/kg 45
49
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
170
Resilience: Unit (Modulus of Resilience), kJ/m3 260
360
Stiffness to Weight: Axial, points 7.3
7.4
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 11
19
Strength to Weight: Bending, points 13
18
Thermal Diffusivity, mm2/s 75
13
Thermal Shock Resistance, points 13
21

Alloy Composition

Aluminum (Al), % 0
6.3 to 7.0
Arsenic (As), % 0
0 to 0.15
Beryllium (Be), % 0.020 to 0.1
0
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
89 to 92.2
Iron (Fe), % 0
0 to 0.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0
1.5 to 2.0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5