MakeItFrom.com
Menu (ESC)

C81400 Copper vs. C67400 Bronze

Both C81400 copper and C67400 bronze are copper alloys. They have 59% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is C67400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 11
22 to 28
Poisson's Ratio 0.34
0.31
Rockwell B Hardness 69
78 to 85
Shear Modulus, GPa 41
41
Tensile Strength: Ultimate (UTS), MPa 370
480 to 610
Tensile Strength: Yield (Proof), MPa 250
250 to 370

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
130
Melting Completion (Liquidus), °C 1090
890
Melting Onset (Solidus), °C 1070
870
Specific Heat Capacity, J/kg-K 390
400
Thermal Conductivity, W/m-K 260
100
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
23
Electrical Conductivity: Equal Weight (Specific), % IACS 61
26

Otherwise Unclassified Properties

Base Metal Price, % relative 33
23
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 45
48
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 260
300 to 660
Stiffness to Weight: Axial, points 7.3
7.5
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 11
17 to 22
Strength to Weight: Bending, points 13
17 to 20
Thermal Diffusivity, mm2/s 75
32
Thermal Shock Resistance, points 13
16 to 20

Alloy Composition

Aluminum (Al), % 0
0.5 to 2.0
Beryllium (Be), % 0.020 to 0.1
0
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
57 to 60
Iron (Fe), % 0
0 to 0.35
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0
2.0 to 3.5
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0
0.5 to 1.5
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
31.1 to 40
Residuals, % 0
0 to 0.5