MakeItFrom.com
Menu (ESC)

C81400 Copper vs. C87600 Bronze

Both C81400 copper and C87600 bronze are copper alloys. They have a moderately high 91% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is C87600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 11
18
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 41
42
Tensile Strength: Ultimate (UTS), MPa 370
470
Tensile Strength: Yield (Proof), MPa 250
230

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
190
Melting Completion (Liquidus), °C 1090
970
Melting Onset (Solidus), °C 1070
860
Specific Heat Capacity, J/kg-K 390
410
Thermal Conductivity, W/m-K 260
28
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 61
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 33
29
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 45
43
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
71
Resilience: Unit (Modulus of Resilience), kJ/m3 260
240
Stiffness to Weight: Axial, points 7.3
7.4
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 11
16
Strength to Weight: Bending, points 13
16
Thermal Diffusivity, mm2/s 75
8.1
Thermal Shock Resistance, points 13
17

Alloy Composition

Beryllium (Be), % 0.020 to 0.1
0
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
88 to 92.5
Lead (Pb), % 0
0 to 0.5
Silicon (Si), % 0
3.5 to 5.5
Zinc (Zn), % 0
4.0 to 7.0
Residuals, % 0
0 to 0.5