MakeItFrom.com
Menu (ESC)

C81400 Copper vs. K93603 Alloy

C81400 copper belongs to the copper alloys classification, while K93603 alloy belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is K93603 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Poisson's Ratio 0.34
0.3
Shear Modulus, GPa 41
72
Tensile Strength: Ultimate (UTS), MPa 370
490 to 810

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1070
1380
Specific Heat Capacity, J/kg-K 390
460
Thermal Expansion, µm/m-K 17
12

Otherwise Unclassified Properties

Base Metal Price, % relative 33
25
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 2.8
4.8
Embodied Energy, MJ/kg 45
66
Embodied Water, L/kg 310
120

Common Calculations

Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 11
17 to 27
Strength to Weight: Bending, points 13
17 to 24
Thermal Shock Resistance, points 13
15 to 25

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Beryllium (Be), % 0.020 to 0.1
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.6 to 1.0
0 to 0.25
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 98.4 to 99.38
0
Iron (Fe), % 0
61.8 to 64
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.6
Nickel (Ni), % 0
36
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.1
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0 to 0.5
0