MakeItFrom.com
Menu (ESC)

C81400 Copper vs. R04295 Alloy

C81400 copper belongs to the copper alloys classification, while R04295 alloy belongs to the otherwise unclassified metals. There are 18 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is R04295 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 11
22
Poisson's Ratio 0.34
0.38
Shear Modulus, GPa 41
37
Tensile Strength: Ultimate (UTS), MPa 370
410
Tensile Strength: Yield (Proof), MPa 250
300

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Specific Heat Capacity, J/kg-K 390
260
Thermal Expansion, µm/m-K 17
7.2

Otherwise Unclassified Properties

Density, g/cm3 8.9
9.0
Embodied Water, L/kg 310
950

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
84
Resilience: Unit (Modulus of Resilience), kJ/m3 260
430
Stiffness to Weight: Axial, points 7.3
6.3
Stiffness to Weight: Bending, points 18
17
Strength to Weight: Axial, points 11
13
Strength to Weight: Bending, points 13
14
Thermal Shock Resistance, points 13
40

Alloy Composition

Beryllium (Be), % 0.020 to 0.1
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0.6 to 1.0
0
Copper (Cu), % 98.4 to 99.38
0
Hafnium (Hf), % 0
9.0 to 11
Hydrogen (H), % 0
0 to 0.0015
Niobium (Nb), % 0
85.9 to 90.3
Nitrogen (N), % 0
0 to 0.010
Oxygen (O), % 0
0 to 0.025
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0
0.7 to 1.3
Tungsten (W), % 0
0 to 0.5
Zirconium (Zr), % 0
0 to 0.7
Residuals, % 0 to 0.5
0