MakeItFrom.com
Menu (ESC)

C81400 Copper vs. S20431 Stainless Steel

C81400 copper belongs to the copper alloys classification, while S20431 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is S20431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 11
46
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 69
86
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 370
710
Tensile Strength: Yield (Proof), MPa 250
350

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
890
Melting Completion (Liquidus), °C 1090
1400
Melting Onset (Solidus), °C 1070
1360
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 61
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 33
12
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.5
Embodied Energy, MJ/kg 45
36
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
270
Resilience: Unit (Modulus of Resilience), kJ/m3 260
310
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
25
Strength to Weight: Bending, points 13
23
Thermal Diffusivity, mm2/s 75
4.0
Thermal Shock Resistance, points 13
15

Alloy Composition

Beryllium (Be), % 0.020 to 0.1
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0.6 to 1.0
17 to 18
Copper (Cu), % 98.4 to 99.38
1.5 to 3.5
Iron (Fe), % 0
66.1 to 74.4
Manganese (Mn), % 0
5.0 to 7.0
Nickel (Ni), % 0
2.0 to 4.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0