MakeItFrom.com
Menu (ESC)

C81400 Copper vs. S31100 Stainless Steel

C81400 copper belongs to the copper alloys classification, while S31100 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C81400 copper and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 11
4.5
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 41
79
Tensile Strength: Ultimate (UTS), MPa 370
1000
Tensile Strength: Yield (Proof), MPa 250
710

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1420
Melting Onset (Solidus), °C 1070
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
16
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 61
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 33
16
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 45
44
Embodied Water, L/kg 310
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36
40
Resilience: Unit (Modulus of Resilience), kJ/m3 260
1240
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
36
Strength to Weight: Bending, points 13
29
Thermal Diffusivity, mm2/s 75
4.2
Thermal Shock Resistance, points 13
28

Alloy Composition

Beryllium (Be), % 0.020 to 0.1
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0.6 to 1.0
25 to 27
Copper (Cu), % 98.4 to 99.38
0
Iron (Fe), % 0
63.6 to 69
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
6.0 to 7.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.25
Residuals, % 0 to 0.5
0