MakeItFrom.com
Menu (ESC)

C81500 Copper vs. 206.0 Aluminum

C81500 copper belongs to the copper alloys classification, while 206.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C81500 copper and the bottom bar is 206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
95 to 110
Elastic (Young's, Tensile) Modulus, GPa 120
71
Elongation at Break, % 17
8.4 to 12
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
27
Tensile Strength: Ultimate (UTS), MPa 350
330 to 440
Tensile Strength: Yield (Proof), MPa 280
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 210
390
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
650
Melting Onset (Solidus), °C 1080
570
Specific Heat Capacity, J/kg-K 390
880
Thermal Conductivity, W/m-K 320
120
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
33
Electrical Conductivity: Equal Weight (Specific), % IACS 83
99

Otherwise Unclassified Properties

Base Metal Price, % relative 31
11
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 2.6
8.0
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 330
270 to 840
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
46
Strength to Weight: Axial, points 11
30 to 40
Strength to Weight: Bending, points 12
35 to 42
Thermal Diffusivity, mm2/s 91
46
Thermal Shock Resistance, points 12
17 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.1
93.3 to 95.3
Chromium (Cr), % 0.4 to 1.5
0
Copper (Cu), % 97.4 to 99.6
4.2 to 5.0
Iron (Fe), % 0 to 0.1
0 to 0.15
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0
0.2 to 0.5
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 0.15
0 to 0.1
Tin (Sn), % 0 to 0.1
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 0.1
0 to 0.1
Residuals, % 0
0 to 0.15