MakeItFrom.com
Menu (ESC)

C81500 Copper vs. 5383 Aluminum

C81500 copper belongs to the copper alloys classification, while 5383 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C81500 copper and the bottom bar is 5383 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
85 to 110
Elastic (Young's, Tensile) Modulus, GPa 120
68
Elongation at Break, % 17
6.7 to 15
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
26
Tensile Strength: Ultimate (UTS), MPa 350
310 to 370
Tensile Strength: Yield (Proof), MPa 280
150 to 310

Thermal Properties

Latent Heat of Fusion, J/g 210
390
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1090
650
Melting Onset (Solidus), °C 1080
540
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 320
130
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
29
Electrical Conductivity: Equal Weight (Specific), % IACS 83
97

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 2.6
9.0
Embodied Energy, MJ/kg 41
160
Embodied Water, L/kg 310
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
23 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 330
170 to 690
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 11
32 to 38
Strength to Weight: Bending, points 12
38 to 42
Thermal Diffusivity, mm2/s 91
51
Thermal Shock Resistance, points 12
14 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.1
92 to 95.3
Chromium (Cr), % 0.4 to 1.5
0 to 0.25
Copper (Cu), % 97.4 to 99.6
0 to 0.2
Iron (Fe), % 0 to 0.1
0 to 0.25
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0
4.0 to 5.2
Manganese (Mn), % 0
0.7 to 1.0
Silicon (Si), % 0 to 0.15
0 to 0.25
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.1
0 to 0.4
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15