MakeItFrom.com
Menu (ESC)

C81500 Copper vs. 6162 Aluminum

C81500 copper belongs to the copper alloys classification, while 6162 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C81500 copper and the bottom bar is 6162 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
68
Elongation at Break, % 17
6.7 to 9.1
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
26
Tensile Strength: Ultimate (UTS), MPa 350
290 to 300
Tensile Strength: Yield (Proof), MPa 280
260 to 270

Thermal Properties

Latent Heat of Fusion, J/g 210
400
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1090
640
Melting Onset (Solidus), °C 1080
620
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 320
190
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
50
Electrical Conductivity: Equal Weight (Specific), % IACS 83
170

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 2.6
8.3
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
19 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 330
510 to 550
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 11
29 to 30
Strength to Weight: Bending, points 12
36
Thermal Diffusivity, mm2/s 91
79
Thermal Shock Resistance, points 12
13

Alloy Composition

Aluminum (Al), % 0 to 0.1
96.7 to 98.9
Chromium (Cr), % 0.4 to 1.5
0 to 0.1
Copper (Cu), % 97.4 to 99.6
0 to 0.2
Iron (Fe), % 0 to 0.1
0 to 0.5
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0
0.7 to 1.1
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0 to 0.15
0.4 to 0.8
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.25
Residuals, % 0
0 to 0.15