MakeItFrom.com
Menu (ESC)

C81500 Copper vs. 7076 Aluminum

C81500 copper belongs to the copper alloys classification, while 7076 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C81500 copper and the bottom bar is 7076 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
160
Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 17
6.2
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 44
27
Tensile Strength: Ultimate (UTS), MPa 350
530
Tensile Strength: Yield (Proof), MPa 280
460

Thermal Properties

Latent Heat of Fusion, J/g 210
380
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
630
Melting Onset (Solidus), °C 1080
460
Specific Heat Capacity, J/kg-K 390
860
Thermal Conductivity, W/m-K 320
140
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
35
Electrical Conductivity: Equal Weight (Specific), % IACS 83
100

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 2.6
8.0
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
31
Resilience: Unit (Modulus of Resilience), kJ/m3 330
1510
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
45
Strength to Weight: Axial, points 11
49
Strength to Weight: Bending, points 12
48
Thermal Diffusivity, mm2/s 91
54
Thermal Shock Resistance, points 12
23

Alloy Composition

Aluminum (Al), % 0 to 0.1
86.9 to 91.2
Chromium (Cr), % 0.4 to 1.5
0
Copper (Cu), % 97.4 to 99.6
0.3 to 1.0
Iron (Fe), % 0 to 0.1
0 to 0.6
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0
1.2 to 2.0
Manganese (Mn), % 0
0.3 to 0.8
Silicon (Si), % 0 to 0.15
0 to 0.4
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.1
7.0 to 8.0
Residuals, % 0
0 to 0.15