MakeItFrom.com
Menu (ESC)

C81500 Copper vs. AISI 445 Stainless Steel

C81500 copper belongs to the copper alloys classification, while AISI 445 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is AISI 445 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
160
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 17
25
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
78
Tensile Strength: Ultimate (UTS), MPa 350
480
Tensile Strength: Yield (Proof), MPa 280
230

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
950
Melting Completion (Liquidus), °C 1090
1440
Melting Onset (Solidus), °C 1080
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 320
21
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 83
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
12
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 41
38
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
98
Resilience: Unit (Modulus of Resilience), kJ/m3 330
140
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
17
Strength to Weight: Bending, points 12
18
Thermal Diffusivity, mm2/s 91
5.6
Thermal Shock Resistance, points 12
16

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0.4 to 1.5
19 to 21
Copper (Cu), % 97.4 to 99.6
0.3 to 0.6
Iron (Fe), % 0 to 0.1
74.9 to 80.7
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.012
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0