MakeItFrom.com
Menu (ESC)

C81500 Copper vs. ASTM Grade LCB Steel

C81500 copper belongs to the copper alloys classification, while ASTM grade LCB steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is ASTM grade LCB steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 17
27
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
72
Tensile Strength: Ultimate (UTS), MPa 350
540
Tensile Strength: Yield (Proof), MPa 280
270

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1080
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 320
51
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 83
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 41
18
Embodied Water, L/kg 310
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
120
Resilience: Unit (Modulus of Resilience), kJ/m3 330
200
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11
19
Strength to Weight: Bending, points 12
19
Thermal Diffusivity, mm2/s 91
14
Thermal Shock Resistance, points 12
17

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0.4 to 1.5
0
Copper (Cu), % 97.4 to 99.6
0
Iron (Fe), % 0 to 0.1
97 to 100
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 0.6
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 1.0