MakeItFrom.com
Menu (ESC)

C81500 Copper vs. AWS E409Nb

C81500 copper belongs to the copper alloys classification, while AWS E409Nb belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is AWS E409Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 17
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 350
500
Tensile Strength: Yield (Proof), MPa 280
380

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1080
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 320
25
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 83
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 41
42
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
110
Resilience: Unit (Modulus of Resilience), kJ/m3 330
380
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
18
Strength to Weight: Bending, points 12
18
Thermal Diffusivity, mm2/s 91
6.8
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0.4 to 1.5
11 to 14
Copper (Cu), % 97.4 to 99.6
0 to 0.75
Iron (Fe), % 0 to 0.1
80.2 to 88.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
0 to 0.6
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0