MakeItFrom.com
Menu (ESC)

C81500 Copper vs. EN 1.1152 Steel

C81500 copper belongs to the copper alloys classification, while EN 1.1152 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is EN 1.1152 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
120 to 160
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 17
12 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 350
400 to 550
Tensile Strength: Yield (Proof), MPa 280
270 to 440

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1080
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 320
52
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 83
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 41
18
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
41 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 330
200 to 530
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11
14 to 19
Strength to Weight: Bending, points 12
15 to 19
Thermal Diffusivity, mm2/s 91
14
Thermal Shock Resistance, points 12
13 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0
0.18 to 0.22
Chromium (Cr), % 0.4 to 1.5
0
Copper (Cu), % 97.4 to 99.6
0 to 0.25
Iron (Fe), % 0 to 0.1
98.6 to 99.52
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0