MakeItFrom.com
Menu (ESC)

C81500 Copper vs. EN 1.4017 Stainless Steel

C81500 copper belongs to the copper alloys classification, while EN 1.4017 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is EN 1.4017 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 17
14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 350
580
Tensile Strength: Yield (Proof), MPa 280
390

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
870
Melting Completion (Liquidus), °C 1090
1440
Melting Onset (Solidus), °C 1080
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 320
30
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 83
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.2
Embodied Energy, MJ/kg 41
31
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
71
Resilience: Unit (Modulus of Resilience), kJ/m3 330
380
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
21
Strength to Weight: Bending, points 12
20
Thermal Diffusivity, mm2/s 91
8.1
Thermal Shock Resistance, points 12
20

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.4 to 1.5
16 to 18
Copper (Cu), % 97.4 to 99.6
0
Iron (Fe), % 0 to 0.1
78.3 to 82.8
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
1.2 to 1.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0