MakeItFrom.com
Menu (ESC)

C81500 Copper vs. EN 1.4062 Stainless Steel

C81500 copper belongs to the copper alloys classification, while EN 1.4062 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is EN 1.4062 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 17
23 to 34
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
79
Tensile Strength: Ultimate (UTS), MPa 350
770 to 800
Tensile Strength: Yield (Proof), MPa 280
530 to 600

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
1030
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1080
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 320
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 83
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
12
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 41
37
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
170 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 330
690 to 910
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
28 to 29
Strength to Weight: Bending, points 12
24 to 25
Thermal Diffusivity, mm2/s 91
4.0
Thermal Shock Resistance, points 12
21 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.4 to 1.5
21.5 to 24
Copper (Cu), % 97.4 to 99.6
0
Iron (Fe), % 0 to 0.1
69.3 to 77.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.45
Nickel (Ni), % 0
1.0 to 2.9
Nitrogen (N), % 0
0.16 to 0.28
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0