MakeItFrom.com
Menu (ESC)

C81500 Copper vs. EN 1.4736 Stainless Steel

C81500 copper belongs to the copper alloys classification, while EN 1.4736 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is EN 1.4736 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
170
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 17
28
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 350
580
Tensile Strength: Yield (Proof), MPa 280
310

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 1090
1420
Melting Onset (Solidus), °C 1080
1380
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 320
21
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 83
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.0
Density, g/cm3 8.9
7.6
Embodied Carbon, kg CO2/kg material 2.6
2.4
Embodied Energy, MJ/kg 41
35
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
140
Resilience: Unit (Modulus of Resilience), kJ/m3 330
250
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11
21
Strength to Weight: Bending, points 12
20
Thermal Diffusivity, mm2/s 91
5.6
Thermal Shock Resistance, points 12
21

Alloy Composition

Aluminum (Al), % 0 to 0.1
1.7 to 2.1
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0.4 to 1.5
17 to 18
Copper (Cu), % 97.4 to 99.6
0
Iron (Fe), % 0 to 0.1
77 to 81.1
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
0.2 to 0.8
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0