MakeItFrom.com
Menu (ESC)

C81500 Copper vs. EN 1.5502 Steel

C81500 copper belongs to the copper alloys classification, while EN 1.5502 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is EN 1.5502 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
120 to 160
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 17
12 to 20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 350
400 to 1380
Tensile Strength: Yield (Proof), MPa 280
270 to 440

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1080
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 320
52
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 83
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.9
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 41
19
Embodied Water, L/kg 310
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
41 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 330
200 to 520
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11
14 to 49
Strength to Weight: Bending, points 12
15 to 35
Thermal Diffusivity, mm2/s 91
14
Thermal Shock Resistance, points 12
12 to 40

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0.4 to 1.5
0 to 0.3
Copper (Cu), % 97.4 to 99.6
0 to 0.25
Iron (Fe), % 0 to 0.1
98 to 99.249
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0