MakeItFrom.com
Menu (ESC)

C81500 Copper vs. EN 1.5522 Steel

C81500 copper belongs to the copper alloys classification, while EN 1.5522 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is EN 1.5522 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
140 to 190
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 17
11 to 21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 350
450 to 1490
Tensile Strength: Yield (Proof), MPa 280
300 to 520

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1080
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 320
51
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 83
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.9
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 41
19
Embodied Water, L/kg 310
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
45 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 330
250 to 720
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11
16 to 53
Strength to Weight: Bending, points 12
17 to 37
Thermal Diffusivity, mm2/s 91
14
Thermal Shock Resistance, points 12
13 to 44

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.2 to 0.24
Chromium (Cr), % 0.4 to 1.5
0
Copper (Cu), % 97.4 to 99.6
0 to 0.25
Iron (Fe), % 0 to 0.1
98 to 98.9
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0