MakeItFrom.com
Menu (ESC)

C81500 Copper vs. Nickel 686

C81500 copper belongs to the copper alloys classification, while nickel 686 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is nickel 686.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
220
Elongation at Break, % 17
51
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
77
Tensile Strength: Ultimate (UTS), MPa 350
780
Tensile Strength: Yield (Proof), MPa 280
350

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1090
1380
Melting Onset (Solidus), °C 1080
1340
Specific Heat Capacity, J/kg-K 390
420
Thermal Conductivity, W/m-K 320
9.8
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 83
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
70
Density, g/cm3 8.9
9.0
Embodied Carbon, kg CO2/kg material 2.6
12
Embodied Energy, MJ/kg 41
170
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
320
Resilience: Unit (Modulus of Resilience), kJ/m3 330
280
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
22
Strength to Weight: Axial, points 11
24
Strength to Weight: Bending, points 12
21
Thermal Diffusivity, mm2/s 91
2.6
Thermal Shock Resistance, points 12
21

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0.4 to 1.5
19 to 23
Copper (Cu), % 97.4 to 99.6
0
Iron (Fe), % 0 to 0.1
0 to 5.0
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.75
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0
49.5 to 63
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
0.020 to 0.25
Tungsten (W), % 0
3.0 to 4.4
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0