MakeItFrom.com
Menu (ESC)

C81500 Copper vs. SAE-AISI 5140 Steel

C81500 copper belongs to the copper alloys classification, while SAE-AISI 5140 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is SAE-AISI 5140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
170 to 290
Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 17
12 to 29
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 350
560 to 970
Tensile Strength: Yield (Proof), MPa 280
290 to 840

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
420
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1080
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 320
45
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 83
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.1
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 41
19
Embodied Water, L/kg 310
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
76 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 330
220 to 1880
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11
20 to 34
Strength to Weight: Bending, points 12
19 to 28
Thermal Diffusivity, mm2/s 91
12
Thermal Shock Resistance, points 12
16 to 29

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0.4 to 1.5
0.7 to 0.9
Copper (Cu), % 97.4 to 99.6
0
Iron (Fe), % 0 to 0.1
97.3 to 98.1
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.7 to 0.9
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0