MakeItFrom.com
Menu (ESC)

C81500 Copper vs. Type 4 Magnetic Alloy

C81500 copper belongs to the copper alloys classification, while Type 4 magnetic alloy belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is Type 4 magnetic alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 17
2.0 to 40
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 350
620 to 1100
Tensile Strength: Yield (Proof), MPa 280
270 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
900
Melting Completion (Liquidus), °C 1090
1420
Melting Onset (Solidus), °C 1080
1370
Specific Heat Capacity, J/kg-K 390
440
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 83
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
60
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
10
Embodied Energy, MJ/kg 41
140
Embodied Water, L/kg 310
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
22 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 330
190 to 2840
Stiffness to Weight: Axial, points 7.3
12
Stiffness to Weight: Bending, points 18
22
Strength to Weight: Axial, points 11
19 to 35
Strength to Weight: Bending, points 12
18 to 27
Thermal Shock Resistance, points 12
21 to 37

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0.4 to 1.5
0 to 0.3
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 97.4 to 99.6
0 to 0.3
Iron (Fe), % 0 to 0.1
9.5 to 17.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.8
Molybdenum (Mo), % 0
3.5 to 6.0
Nickel (Ni), % 0
79 to 82
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0