MakeItFrom.com
Menu (ESC)

C81500 Copper vs. C14510 Copper

Both C81500 copper and C14510 copper are copper alloys. They have a very high 99% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C81500 copper and the bottom bar is C14510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 17
9.1 to 9.6
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
43
Tensile Strength: Ultimate (UTS), MPa 350
300 to 320
Tensile Strength: Yield (Proof), MPa 280
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1090
1080
Melting Onset (Solidus), °C 1080
1050
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 320
360
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Base Metal Price, % relative 31
33
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 41
42
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
25 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 330
230 to 280
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 11
9.2 to 10
Strength to Weight: Bending, points 12
11 to 12
Thermal Diffusivity, mm2/s 91
100
Thermal Shock Resistance, points 12
11 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Chromium (Cr), % 0.4 to 1.5
0
Copper (Cu), % 97.4 to 99.6
99.15 to 99.69
Iron (Fe), % 0 to 0.1
0
Lead (Pb), % 0 to 0.020
0 to 0.050
Phosphorus (P), % 0
0.010 to 0.030
Silicon (Si), % 0 to 0.15
0
Tellurium (Te), % 0
0.3 to 0.7
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0