MakeItFrom.com
Menu (ESC)

C81500 Copper vs. C84000 Brass

Both C81500 copper and C84000 brass are copper alloys. They have 86% of their average alloy composition in common.

For each property being compared, the top bar is C81500 copper and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
65
Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 17
27
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
42
Tensile Strength: Ultimate (UTS), MPa 350
250
Tensile Strength: Yield (Proof), MPa 280
140

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
1040
Melting Onset (Solidus), °C 1080
940
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 320
72
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 82
16
Electrical Conductivity: Equal Weight (Specific), % IACS 83
17

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 41
49
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
58
Resilience: Unit (Modulus of Resilience), kJ/m3 330
83
Stiffness to Weight: Axial, points 7.3
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 11
8.2
Strength to Weight: Bending, points 12
10
Thermal Diffusivity, mm2/s 91
22
Thermal Shock Resistance, points 12
9.0

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Chromium (Cr), % 0.4 to 1.5
0
Copper (Cu), % 97.4 to 99.6
82 to 89
Iron (Fe), % 0 to 0.1
0 to 0.4
Lead (Pb), % 0 to 0.020
0 to 0.090
Manganese (Mn), % 0
0 to 0.010
Nickel (Ni), % 0
0.5 to 2.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.15
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0 to 0.1
2.0 to 4.0
Zinc (Zn), % 0 to 0.1
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7